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Abstract 

The orientability properties of space-times are analysed in detail using elementary 
algebraic methods. Time, space and charge orientability are discussed and various possible 
generalisations of charge orientability suggested. There is also a bundle-theoretic analysis 
of the first two topological properties together with a discussion of spinor-structures from 
the point of view of the Lorentz bundle of bases over a space-time. A section is devoted to 
some comments on the topologisation of certain space-times with topologies derived 
from their causal relations. 

In this paper we shall discuss two topics on space-time topology. These 
are the orientability properties of  space-times and the retopologisation of 
certain space-times with topologies induced by a casual relation. The 
discussion will be mathematically informal, that is, descriptive rather than 
axiomatic. The reader is referred to the textbooks of  Spanier (1966) and 
Steen & Seebach (1970) for the definitions and proofs of algebraic and 
analytic-topological statements. 

Apart from the overall orientability or non-orientability of  a space-time 
as a topologicalmanifold, a space-time may or may not possess several other 
orientability properties. These are topological properties peculiar to space- 
times: 'future-orientability (Markus, 1955) or 'time-orientability', 'space- 
orientability' and 'charge orientability' (Geroch, 1969). The first of these 
properties is geometrical whilst the last is physico-geometrical. We shall 
discuss possible generalisations of  the latter orientability, namely 'I- 
orientability' and 'phase-orientability'. Our discussion of  the orientability 
properties will be divided into two parts. In Part 1 we will approach the 
properties from the point of  view of  elementary algebraic topology: 
homotopy, singular homology and singular cohomology. In Part 2 we will 
discuss the properties from the viewpoint of  the more complex and power- 
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ful (~ech cohomology theory and the Lorentz bundle of  bases of  a space- 
time. In this part we shall also briefly discuss group extension theory and 
the algebraic structure of  the Lorentz group. 

The importance of the above-mentioned topological properties is that 
they are about the only topological restrictions that have been proposed as 
properties that those space-times representing 'reasonable' models of  
Space-Time should possess. 

A space-time is usually defined (Penrose, 1968; Lichnerowicz, 1968) as a 
smooth, connected, paracompact, Hausdorff 4-manifold X which carries a 
smooth global Lorentzian tensor field ~ .  A justification of  this definition 
would probably proceed as follows. The 'smooth 4-manifold with smooth 
Lorentzian tensor field' part of  the definition, is the basis of  general rela- 
tivity, piecing together local Minkowski spaces. The topological manifold 
structure is a rather natural choice for a model of Space-Time (if we make 
the hypothesis that the universe 'looks the same' everywhere). This 
is because the group of autohomoeomorphisms of a (connected) topological 
manifold acts transitively (Spanier, 1966), that is, for each Xo, Xo'Z X, 
there is a homoeomorphism: (X, Xo) ~ (X, Xo'), which carries any neighbour- 
hood ofxo homoeomorphically onto a neighbourhood of Xo'. The connected- 
hess condition (equivalently path-connectedness) is imposed because 
one would like to think that Space-Time consists of 'one piece' or that any 
two space-time points could be connected by a curve 7: Xo ~ Xo'. Lastly, 
the conditions of paracompactness and T2 separability are imposed mainly 
for mathematical convenience: any paracompact Hausdorff manifold 
admits a global Riemannian metric tensor field and a countable atlas. 

Part 1. Orientability Properties 
1.1. Time-Orientability 

In the following, we shall always assume that a space-time Xhas (at least) 
the structures listed above. The tangent bundle (Brickell & Clarke, 1970) 
of  X' IT(X)', will be denoted by 

~ ( x )  - (T(X), X, T(X, Xo), ~T) 

Here T(X) is the totality of vectors tangent to X, z~T is the projection of  
T(X) onto X which assigns a base point in X to a tangent vector over X. 
The fibres ~z~l{Xo} = T(X, Xo), are the linear tangent spaces to X at a given 
point Xo e X. The fibre T(X, Xo) is linearly diffeomorphic to ~4, which we 
shall usually identify with Minkowski space. The Lorentzian tensor field 
allows us to categorise the vectors over X as time-like, space-like or light- 
like according to 

~ v ~ ( v ,  v) > 0, < 0, or = 0 

A vector field on X is a global smooth section of  the bundle projection ~r; 
that is, a smooth function V: X -+ T(X) such that Zero V = ~ x. Thus a vector 
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field is a global smooth choice of  a vector Vx ~ T(X, x) for x ~ X. A vector 
field will be called 'time-like' iff the function .W(V,V): X---~ E; x~-> 
,W,(Vx, Vx) is positive definite. The Lorentzian tensor allows one to define 
a bundle ~t(X) of  time-like vectors over a space-time X 

~t(X) -~ (t(X), X, t(X, Xo), xt) 

The total space t(X) of ~t(X) is the open submanifold of  time-like vectors 
over X: .W*-I(]0)), where Z,r is the function from T(X) to [~ which sends 
v ~ T(X) to .W~r(v)(v, v). The projection rot is the projection rc r restriction to 
t(X). Its fibres t(X, Xo) are the sets of  time-like vectors over Xo 6 X. 

The interesting point about this bundle is that its fibres are disconnected. 
Let v+(xo) be the two components of  the fibre over Xo. A choice of  component  
v+(xo) over Xo represents a selection of  a 'time-sense' at Xo. I f  there is a 
section of  it(X), a global choice of  time-like vector over X, we may make a 
continuous choice of  component v+_(x) over X; that is, a global sense of  time 

\ 

Figure 1 Figure 2 

over the whole space-time manifold. Not  all space-times have such a 
convenient property. Clearly, if we were able to make the above construction 
X would have to carry a global non-vanishing vector field. Not  all smooth 
manifolds can carry such a vector field. The 'Hairy Ball Theorem' (Maunder, 
1970) tells us, for example, that the two-sphere S 2 does not. To see this 
intuitively, attach a unit tangent vector to each point S 2 imbedded in R 3 
around lines of  latitude S 1. When we reach a pole, the vectors will have 
'nowhere to point '  (Fig. 1). To make a system of tangent vectors point in 
smoothly prescribed directions, their lengths have to vanish at the poles 
(Fig. 2). One can show that any smooth vector field on S 2 has to vanish at 
least once (Eilenberg, 1963). 

One may also show that no even-dimensional sphere can carry a non- 
vanishing vector field. Hence, in particular S 4 cannot. Any model of  the 
universe which is topologically S 4 is not 'future orientable', in the sense that 
we cannot construct a non-vanishing (time-like) vector field. 

I f  we define v(X) as the set of  all components v+_(x) and give it the quotient 
topology of  t(X) under the relation v ~ v' i f fv  and v' lie in the same fibre 
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over X and in the same component of the fibre, the local existence of sections 
of it(X), time-like vector fields defined along certain open sets of X, ensures 
that v(X), along with the obvious projection, is a two-fold covering space 
(Spanier, 1966) of X. Let us agree to call a space-time 'time-orientable' iff 
there is a section of the latter covering projection. Then in a time-orientable 
space-time one may make a global continuous choice of time-sense. 
Equivalently (Spanier, 1966) each homotopy class of loops 171 E Xo), 
where n~(X, xo) is the first homotopy group of Xat  Xo (Spanier, 1966), should 
induce the identity auto-morphism of the fibre v(X, xo)= {v+_(Xo)} over 

Figure 3 

Xo E X. Again, this condition is equivalent to the requirement that any 
homotopy class paths [71 for 7: Xo ~ Xo' induces the same homoeomorphism 

171 ~ : v(X, Xo) ~ v(x, xo') 

or that the structure group (Spanier, 1966) of the principal fibre bundle 
(the time-sense bundle) 

�9 (x )  = (v(x), x ,  v(X, Xo), Z~,p) 

should be reducible to the identity. This latter gives us the following graphic 
interpretation. Given space-time points Xo, Xo' e X, any path 7: Xo -~- )Co' 
allows one to carry a choice of time-sense from Xo to Xo' along 7: Vo 
[71 *(Vo) for vo~ v(X, xo) and, as the notation suggests, the time-sense only 
depends on the homotopy class 17[ of the path 7. Suppose a is a path from 
Xo to Xo' non-homotopic to 7. Carrying the time-sense Vo ~ v(X, Xo) along a 
yields a time-sense Itrl * (vo) e v(X, xo'). Physically, one would like X t o  be 
such that lal * (Vo) = 17[ * (vo) or that [7l * (Vo) should be independent of 7. 
That is, X should be time-orientable. Otherwise, if an interstellar voyager 
sets out from xo to xo' along 7 and another one along o- (Fig. 3) then if 
171 * (Vo) r [al * (vo), according to the former voyager, the latter would be 
'getting younger', and vice versa! 

We have already seen that if a space-time carries a time-like vector field V, 
it is time-orientable, for x ~ 'component of Vx' is a section of the time- 
sense bundle. Conversely, a time-orientable space-time carries a time-like 
vector field. If X is a space-time, we shall denote its three-sphere bundle 
~(X)  of unit tangent vectors by 

r =- (r x ,  r  Xo), ~,) 
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This bundle has total space a(X) of  all unit tangent vectors with respect to a 
Riemannian metric and the three-sphere fibres a(X, Xo) are the unit vectors 
over Xo c X. If  we express the Lorentz tensor La in its diagonal form over Xo, 
a three-dimensional picture of the tangent (Minkowski) space (Fig. 4) 
convinces us (Geroch, 1969) that in any space-time there is a vector field- 
up-to-a-sign 0 which assigns to Xo ~ X the up-to-a-sign vector in T(X, xo) 
with unit (Riemannian) and (Lorentzian) 'norms'. I f  X is time-orientable, 
one may make a continuous choice of future cone and hence of  a sign of 0. 
The composed function is then a unit time-like vector field on X. Thus a 
connected paracompact Hausdorff space-time is time-orientable iff it 
carries a unit time-like vector field. 

Hyperboloid of unit Lorentzian, norm,i t ( X ' x ~  xO) $3 

Figure 4 

-+0x 0 

There is a generalisation of  the Hairy Ball Theorem to the effect that a 
compact (Hausdorff) manifold carries a unit vector field iff its Euler- 
Poincar6 characteristic (Spanier, 1966) x(X) vanishes. Thus space-times 
topologically •p4, S 4, Cp2, S 2 x S 2 . . . .  cannot be time-orientable, since 
they have characteristics of  1, 2, 3 and 4 respectively. I f  one starts with a 
given Hausdorff 4-manifold X one may or may not be able to give X the 
structure of  a time-orientable space-time. One can, however, always 
construct the structure of  a time-orientable space-time on a manifold 
carrying a non-vanishing vector field. I f  R denotes a Riemannian metric 
tensor on such a space-time, and V the non-vanishing vector field, one may 
define a Lorentzian tensor field .CP by 

~e :x  ~ R~ - R~*(z~) | R~*(Vx)/2R~(V~, r'~) 

[here Rx* are the local isomorphisms of the tangent spaces T(X, x) onto the 
cotangent spaces T*(X, x) induced by R]. With respect to La, Visa nowhere- 
vanishing time-like vector field. 

Given any space-time X, there is a group-homomorphism: q~x E 
Hom(zcl(X, Xo),Z2) defined as follows. If  ]71 is the homotopy class of a 
loop ? in X at Xo, IV[ induces an autohomoeomorphism I?] * of  the fibre 
v(X, xo) in the time-sense bundle z(X). [71 * is defined by the rule 

[~,l*:vo ~ ~v* forvo~v(X, Xo) 
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Here, *"  Vvo is the unique lift (Spanier, 1966) of  ? from the time-sense vo. It is 
trivial to verify that the function 

 Ox: Ivl Ivl* ~ Sym(v(X, Xo)) ~ ?72 
is a homomorphism. Also, it is clear that Xis time-orientable iff ~Ox = 1 the 
trivial homomorphism of Hom(zq(X, xo),7/2). For if 9x = 1, any loop in 
X at xo lifts to a loop in v(X), in which case a section of  the covering pro- 
jection exists (Spanier, 1966). If  such a section s exists and V is a loop in X at 
xo, W C~o) is a loop in V(X) at s(xo) by the unique path-lifting property 
(Spanier, 1966), and hence ~Ox = 1. 

Of course, we are guaranteed that Xis time-orientable if Horn (~a(X, Xo), 
?72) = 1. Thus if Xis topologically such that rq(X, xo) has no invariant sub- 
group of  index 2, X must be time-orientable. For given rq(X, Xo) has no 
invariant subgroup of  index 2, Horn (ha(X, Xo), ?72) = 1. To see this, suppose 
that ~o ~ Hom(na(X, xo),?72) and q~ # 1, then q~ is an epimorphism and 
Ker(q~) <3 ~za(X, Xo) is an invariant subgroup of index 2. 

This result may be translated into the language of (singular) cohomology 
theory as follows. Firstly, we note (Scott, 1964) that there is an isomorphism 
of abelian groups: 

Horn (ua(X, Xo), 7/2) ~ Hom (ab (ha(X, Xo)), ?72) 

where ab (~za(X, xo)) is the 'abelianisation' of  the group ~a(X, Xo): ~za(X, Xo)] 
[ha(X, Xo), ~zl(X, Xo)]. But (Greenberg, 1967) from 

ab (ha(X, Xo)) ~ el(X, ?7) 

where HI(X, ?7) is the first integral singular homology group we get 

Horn (zq(X, Xo), 772) ~ Hom (Ha(X, 77), ?72) 

From the short-exact sequence of  the universal coefficient theorem for 
cohomology (Spanier, 1966) 

Ext (no(X, 77), ?72) ,-> el(X,  ?72) -~ Hom (Ha(X, 77), 7/2) 

and the fact that Ho(X, ?7) ~= 2[ because X is path connected, we obtain 

Hom (zr,(X, xo), ?72) ~ Ha(X, 2[2) 

where the latter is the first singular mod-2 cohomology group of X. If  the 
image of  ~Ox under the above isomorphism is 7tx, then hVx alternatively 
represents the obstruction to the time-orientability of  a given space-time X: 
X is time-orientable iff 7~x = 0. 

The latter considerations motivate the following definition. A space-time 
X is called T-orientable iff the O-sphere bundle z(X) is orientable in the 
sense of  Spanier (1966). Equivalently (Spaniel 1966), X is T-orientable iff 
the homoeomorphism [?[ ~ induced by any loop class IV[ ~ ~za(X,x) induces 
the identity automorphism of the reduced (Spanier, 1966) cohomology 
groups RH~ of the fibre O-spheres v(X,x). Recall that since 
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v(X, xo)~= S ~ gHO(v(X, Xo),Z)~ 77, being generated by the duals Ivo*l, 
say, of the singular O-simplexes vo:A~ ~-'. - Vo. Carrying such a generator 
around a loop in X should result in returning with the same generator: 
~H~ *) • (]Vo* I) = Ivo*l (instead of-]Vo* [). One may extend this defini- 
tion to calling a space-time T-orientable over a ring R iffz(X) is an orientable 
O-sphere bundle over R (Spanier, 1966). Using the equivalent definition 
that Xis T-orientable over R iffany I~1 ~ zl(X, xo) induces the identity auto- 
morphisms of RH~ Xo), R), it follows from the fact that Z2 has only one 
generator, that any space-time is T-orientable over the field 7/2. There is a 
necessary and sufficient condition that a space-time X be T-orientable 
(over 7/). This is, that the first Stiefel-Whitney class Wl(~(X)) of z(X), 
wl(z(X)) ~ HI(X,7~2) should vanish. Using this condition one may show 
that T-orientability over 7/ and time-orientability coincide. If  X is time- 
orientable, there is a section of z(X), but in this case, one may show that the 
fundamental class (Spanier, 1966) (2~(x) of z(X) vanishes. But for O-sphere 
bundles, the fundamental class coincides with the first Stiefel-Whitney 
class. Thus a time-orientable space-time is T-orientable over 7/. Conversely, 
if X is T-orientable over 7/, it is time-orientable. For then the homoeo- 
morphisms Iv[ * induce the trivial automorphisms of RH~ Xo),7/); 
[7[ c u,(X, xo). That is, ~n~ *) • (Ivo*l)= Ivo*l. Using the Kronecker 
product, we get 

n ~  ~ ) ( lvo* l ) ( lvo l )  = Ivo*l (Ivol) = 1 = Ivo*l (l~I ~ (Ivol)) 

therefore, lvo*[([~l ~(Vo))= 1 ~. I~I ~(Vo)--vo, or any loop in x lifts to a 
loop in z(x). Consequently, x is time-orientable iff wl(r(X)) = O. 

1.2. Space-Orientability 

The concept of the space-orientability of a space-time is dual to the 
concept of time-orientability. It is defined as follows. We have seen that any 
space-time X carries a line-bundle. That is, there is a one-dimensional 
linear subspace smoothly assignable to each tangent Minkowski space over 
X. These are the linear spaces generated by the unit vectors • E,(0=) = 
~,(-Ox). We may form a quotient bundle of the tangent bundle ~T(X) as 
follows. Define v + v' for v, v 'c  T(X) iff zca-(v)= rca-(v') and v -  v'~ 
R.(O~r(v)). This bundle has fibres T(X, Xo)/R,(Ox) which are three-dimen- 
sional linear subspaces of T(X, xo). [Note that out of any basis of T(X, xo) 
including either of • we may choose the other three vectors as space- 
like.] We denote T(X, xo)/~.(O~) by S(X, xo). It is clear that we may place a 
quotient metric on the new quotient bundle, and hence we may form a two- 
sphere bundle of unit vectors. The fibres of the latter will be called 'celestial 
spheres'. S 2 is an orientable 2-manifold (Spanier, 1966; Greenberg, 1967). 
I f  we denote the unit vectors of S (X, Xo) by s (X, Xo), the two spheres s (X, Xo) 
have orientations ~:O'x, which we shall shortly define more precisely. 
Because one may locally define consistent orientations of these celestial 
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spheres, one can construct a two-fold covering space of X consisting of  the 
totality of the • with a suitable topology. Xis called 'space-orientable iff 
there is a section of this covering space.' Clearly, the analysis of space- 
orientability is analogous to that of time-orientability. One may define a 
homomorphism ~x~Hom(~l (X,  xo),Z2) or a cohomology class ~ x ~  
Hi(X, 7/2) representing the obstruction to a given space-time being space- 
orientable. 'S-orientability' over a ring R is also suggested, a space-time 
being called S-orientable over R iff the bundle of orientations of celestial 
spheres is an R-orientable O-sphere bundle. 

An orientation of an n-manifold M is a choice of generator of  the 
homology groups H,(M, Ml{m }; Z) for m ~ M defined continuously over M. 
S z is an orientable 2-manifold because there is a class U ~ H2(S:;Z) such 
that i f s  ~ S 2 and J~: (SZ,~o) c ($2,$2\{s}) the homology class Hz(J,)(U ) 
H2(S 2, SZ\{s}) is a generator. U is called an orientation of S z. A connected 
orientable manifold has just two orientations, d:a~ ~ H2(s(X, x), 2~) are the 
orientations of the celestial spheres s(X,x). A space-time is thus called 
space-orientable iff carrying a generator ao of H2(s (X, Xo), 2~2) around a loop 
in X results in returning with the same generator. 

Figure 5 

Alternatively, the transport of senses of left and right around the space- 
time should be independent of path chosen. In a non-space-orientable space- 
time, if two interstellar voyagers set out from Xo to Xo' along non-homotopic 
paths, they could be presented with the mirror images of each other on 
reaching Xo' ! 

The definition of the orientability of the celestial spheres is closely allied 
to the following construction. Let us agree to call a space-time X 'S*- 
orientable' iff the two-sphere bundle of celestial spheres constructed above 
is an orientable two-sphere bundle (Spanier, 1966). Now, any path ~ in X 
induces (Spanier, 1966) homotopy equivalences [7] ~ : s(X, xo) ~- s(X, xo') 
for y: Xo ---> Xo'. Equivalently, X is S-orientable iff any loop 7 in X induces 
the identity automorphism of the (reduced) cohomology group 

RH2(s(X, x), 7?) = H2(s(X, x), Z) 
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Because n2(s (X, x), 77) ~ n2(s (X, x), ~), the implication is that carrying any 
orientation of  s(X, x) around a loop in X results in returning with the same 
orientation. One may show (Spanier, 1966) that X is S*-orientable iff the 
first Stiefel-Whitney class of the bundle of celestial spheres vanishes: 
wl(~(X)) e HI(X,7/2). It is clear that X is S*-orientable iff X is space- 
orientable. 

We shall return to time orientability and space-orientability in the second 
part. Next, we turn to various physico-geometric orientability properties. 

1.3. Physico-Geometric Orientabilities 
The prototype of the orientabilities we shall be considering in this section 

is charge-orientability as formulated by Geroch (1969). Over each space- 
time point x there lies a pair q-ex of charges. One makes the very reasonable 
hypothesis that there are neighbourhoods of any space-time points such 
that along these open sets one may make a (continuous) choice of either of 
• In this way, with a suitable topology the totality of all charges over the 
points of Xis a two-fold covering space of X: the charge bundle on which ;Y2 
acts via the charge-conjugation operator C. X is called 'charge orientable' 
iff there is a section of the covering projections, or equivalently if loops in X 
lift to loops in the charge-covering space, or if paths in X induce the same 
homoeomorphism of the fibres over the end points. The analysis of charge- 
orientability is clearly closely analogous to those of time and space-orient- 
ability, the obstruction to X being charge-orientable being represented by a 
homoeomorphism q3 x ~ Hom (rq(X, Xo), 2~2) or by a mod-2 cohomology class 
~x ~ HI(X,7/2) �9 Clearly, if X is such that ~x(X, xo) has no invariant sub- 
group of index 2 or if H~(X, 772)= 0, X is time-orientable space-orientable 
and charge-orientable. Even more, X is an orientable manifold, the orient- 
ability of a space-time manifold being analysed in one approach (Greenberg, 
1967) by constructing a two-fold orientation covering space of all generators 
of the groups H4(X,X\{x}) for x ~ X. By excision, H4(X, Xk{x))~- 
H4(B, B \{x}) ~- H3(B\{x}) ~ H3(OB') where B ~ B ' i s  coordinate neighbour- 
hood around x with C I (B ' )c  B and OB' ~ $3; generators of the former 
homology group carrying through the chain of isomorphisms to a generator 
of H3(OB') representing an orientation of  the boundary three-sphere of the 
closed coordinate ball B'  around x. The obstruction to X being orientable 
is representable by a ~o x' e Hom(Trl(X, xo), 7/2) or a 5Px' ~ HI(X, Z2). If  Xis 
compact, ~x'  is the first Stiefel-Whitney class of X (Spanier, 1966). 

It is not a large extrapolation from the definition of charge orientability 
to discuss slightly more complicated analogous orientabilities. For instance, 
using local sections one may construct a three-fold covering space of X 
consisting of the totality of I-spin-1 multiplets (pions) over the points of X, 
X being called I-orientable iff the covering space admits a section in which 
case we can globally and continuously distinguish, say, 7r ~ from n +-. To be 
able to globally and continuously distinguish all three, the structure group 
zcl(X, Xo) of the/-bundle should be reducible to the identity. Similarly, for 
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higher SU(2) multiplets and SU(3) multiplets one may construct covering 
spaces where fibres are the local multiplets and investigate the possibility of  
globally being able to split the multiplets using our local observation of the 
existence of  sections. 

The following considerations arise from quantum mechanics. The 
quantum-mechanical state of a system is represented by a vector 
ray Cx over x ~ X. ~kx is topologically S 1. Given that we may make a local 
choice of a vector ~bx ~ ~x, under what conditions on X can one make a 
global choice of phase or selection of qS~ ? If  we use the local choices to 
construct a one-sphere bundle (Spanier, 1965) or 'phase bundle' over Xdoes 
the bundle necessarily admit a section? One can show that a necessary 
condition is that the fundamental class (Spanier, 1966) of the phase bundle 
associated with ~k vanishes. In this case the fundamental class is a co- 
homology class of  the group H2(X, Z2). 

Part 2. The Bundle Theoretic Approach 

In this part of the paper we consider space and time-orientability from 
the viewpoint of the Lorentz bundle of bases over a space-time. We also 
discuss the concept of'spinor-structures' (Geroch, 1968). Roughly, a spinor- 
structure on a space-time is a two-fold covering space of  the Lorentz 
bundle ~L+$(X) of  a space and time orientable space-time with structure 
group SL(2, C) such that the restriction of  the covering map to any fibre 
SL(2, C)~ for x ~ X is the universal covering map SL(2, C)x --~ L + ]'x, the 
structure group of the Lorentz bundle. One can justify the existence of  such 
a structure over a space-time using arguments based on the Aharanov-  
Susskind 'Gedanken' experiment (Aharanov & Susskind, 1967; see also 
Geroch, 1968 and Penrose, 1968). Such arguments are ultimately based on 
the spinorial nature of spin--} elementary particles such as the electrons and 
the neutrino. 

To prepare the ground for the discussion, we present below a rapid 
survey of  some of the mathematical tools we shall be using. First, there is a 
discussion of presheaves of  modules and groups on a topological space 
and the elements of  the 12ech cohomology theory, including the 12ech 
analogue of the 'Bockstein' exact coefficient sequence of  singular co- 
homology. Then, principal fibre bundles are defined, along with their 
reduction, extension and the use of Cech cohomology in their classification. 
Next, there is a brief discussion of group extensions with a non-abelian 
kernel and the algebraic structure of the Lorentz group L. These results are 
then applied to the study of the reducability and extendability of  the 
Lorentz bundle and the connection of these operations with the orient- 
ability properties just mentioned. 

2.1. Presheaves and ~eeh cohomology 

(a) A presheaf (Spanier, 1966; Eilenberg, 1963) is a contrafunctor S from 
the category "fiX) of open sets and inclusion mappings of  a topological 
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space X to a category C which possesses a zero object O such that S(~b) = 0. 
Thus for each open set Ve  z(X) there is an object S(V)  ~ C and if iv': 
V c V' is an inclusion mapping of  z(X), S(iv ' ) :S(V ') -+ S(V)  is a homo- 
morphism of  C such that if Vc  V ' c  V', S(i v") = S(iV~) o S(i v') and 
S(ivV)=~s~v). The homomorphisms S(iW') for i v ' : v  ~ V' are called 
'restriction maps'. For  example, one may take S to be a constant prcsheaf. 
Such a presheaf assigns a constant object to C to each open set V of  X, 
S(V)  = G, say. One denotes such a presheaf by G. 

A homomorphism between presheaves S, S'  over Xis the giving ofhomo-  
morphisms H v : S ( V ) - +  S'(V) in C such that whenever iv': V ~ V', the 
following diagram commutes 

S(l v ' )  
s ( v ' )  , s ( v )  

Hv, ~ ~, Hv 
s ' ( v ' )  ~ s ' ( v )  S'(i~,') 

That is, H:  S -+ S' is a natural transformation of functors. For example, if 
S and S' are constant presheaves G, G' over X, a homomorphism 0: G ---> G'  
is induced by any homomorphism 0: G ~ G' in C. 

Suppose that C is a 'nice' category such as the category of  R-modules in 
a ring R or the category of groups. Given presheaves S, S '  on Xwith values 
in C one may define new presheaves Ker(0) and Im(0) for any homo- 
morphism 0: S ~ S '  by setting Ker(0)v = Ker(0v) for Ov:S(V) -+ S'(V). 
It is straightforward to verify that Ker(0) and Im(0) thus defined are in fact 
presheaves on X. Hence, one may talk of exact sequences ofpresheaves over 

a topological space, forexample, short-exactsequences:S> " > S '  B >> S". 
Clearly, an exact sequence of  C induces an exact sequence of  constant pre- 

sheaves overX:G> a G' ~ G" ~ ~ G". >> :*- G> > G' "7 Alternatively, 
there is a functor imbedding C in the category of  presheaves over X. 

(b) Let Coy(X) denote the category of  open covers of  a topological space 
X. The objects of  Coy(X) are the open covers of X and via the relation of  
refinement: v < v' ~ Cov(X) iffV V~ v ~ V' ~ v' and V c  V' (v' refines 'v'), 
the morphisms F: v --> v' iffv < v' are defined by V c  F(V). In fact, Cov(X) 
is directed (Greenberg, 1967) under the relation of refinement. Given a 
presheaf S from X to C (a nice category), the Cech cohomology of  X in S is 
defined as follows. If  v ~ Cov(X), define a cochain complex C(v,S) by 
defining the 'module' of  degree q to be the module of all functions q5 which 
assign to a (q + 1)-tuple: Vo . . . . .  V~ of  opens ofv  with 

q 

N {v,} # z 
t=0 

an element qS(Vo,..., Vq) of  



110 GEORGES. WHISTON 

Addition is defined pointwise and the coboundary homomorphisms from 
degree q to degree q + 1 are 

q+l  q+ l  

a~(~b):(Vo . . . .  . v~+l) ~ Y ( - l ' ) ~ ( V o  . . . . .  ~ . . . .  .v~+3l  A v~ 
,=0  i=O 

where [ denotes restriction. It is easily verified that 6 ~ o 6~-1= 0. The 
modules Hq(v,S) are defined to be Ker(f~)/Im(6"-l). I f  v < v' there is a 
homomorphism r,~,: Hq(v, S)--> H~(v ', S) which behaves properly under 
refinement in such a way that <Hq(v,S)>v ~ Cov(X) is a direct system 
(Spanier, 1966; Greenberg, 1967)over Cov(X). The (~ech cohomology 
groups of Xin S are defined as the direct limit: lim ---> <Hq(v, S)> =-- ffI ~(X, S), 
the direct-limit of the groups Hq(v, S). 

If  S is a constant presheaf of  non-abelian agroups on X, although the 
higher cohomology groups are not defined in general; the (~ech groups 
/(r o (x  ' G) a n d / t  I(X, G) are always defined. 

Any homomorphism h: S -+ S' of  presheaves over X induces a homo- 
morphism h* : /~  ~(X, S)  -+ /4  q(X, S ')  in a functorial way. We shall need 
the following t~ech analogue of  the Bockstein exact coefficient sequence of  
singular cohomology (Spanier, 1966) associated with an exact sequence 

S > " > S '  p >> S" of  presheaves over X: 

v 

H,(~c . s )  " ., n,(~',s") ~., 

) ~,~ 

v ~ 

H~+I(X, S) - - - -+  

The homomorphisms 6.a: i-Iq(X,S")-->fflq+l(X,S) are called the 
connecting homomorphisms of the exact sequence of  presheaves. (Because 
they connect the three term exact sequences built on the former.) 

2.2. Classification of Principal Fibre Bundles 

(a) A principal fibre bundle ~ over a topological space X is a collection 
= (E, X, G,~z). Here, E (the total space of  4) is a topological space on which 

the topological group G (the structure group of 4) acts effectively in such a 
waythat rr: E-->X=E/Gand for eachpoint of Xthereis  aneighbourhood. V 
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and ahomoe0morphismhv:  ~- l (V)  ~ V • G w i t h p v  o hv = ~v - 7~]Trl(V'); 
Pv being the projection of  V x G onto V. Let 2: E • G --> E b e  the continuous 
action of  G on E. 

A homomorphism of  principal fibre bundles ~ --> 4' over X is a pair 
(f ,  ~o), whe re f i s  a continuous function E ---> E '  and ~p a continuous homo- 
morphism ~p: G ---> G' such that the following diagram commutes:  

E •  G -" E 

E '  x G' .. > E " / ~ "  ~,, 

A homomorphism of  principal fibre bundles is called a reduction of the 
structure group i f ff is  an inclusion map and ~0 an inclusion monomorphism. 
I t  is called an extension of  the structure group i f f f i s  an identification map 
and ~0 is an epimorphism [G' is then a quotient group of  G, or G is a group 
extension of  G' by Ker(~o)]. 

(b) Use will be made of  the following result (Bott & Mather, 1967). 

Classification theorem. There is a 1-1 correspondence between iso- 
morphism classes of  principal fibre bundles with structure group G over a 
topological space X and the ~ech cohomology group ~ I(X, G). 

Roughly, the proof  goes as follows. Let 4 be a principal fibre bundle over 
X with structure group G. Each point of  X has a neighbourhood V along 
with a local section Sv of  the bundle projection n: E -+ X over V 

~ O s v = i v : V  ~ X 

Moreover, all such opens form a base for the topology of X. I fv '  ~ Cov(X),  
there is a v < v' and for each V ~ v a local section Sv of z~. Suppose that v is 
such a cover. One defines a multiplicative (~ech cocycle gv of  v in G as 
follows. I f  x ~ V N V' for V', V ~ v, since Sv and Sv, are sections and G acts 
transitively on the fibre over x, there is a g~,.v.(X) ~ G with Sv(X) = Sv,(X). 
g~,,v(X). I f  x E V N V' N V" for V, V',  V" ~ v, we must have 

g~v,,(x) = g~v,(X), g~,,v,,(x) 

which is the multiplicative cocycle condition. I f  s '  is another system of  local 
sections on v, then for each V E v and x ~ V there is a g~v(X) ~ G such that 

s, _ s" .gvv,(X)gsv,(X) gvv , ( x ) -  g v(X) -1 

Thus the cocycles g S and g S' of  v in G are cohomologous, and the coho- 
mology class gv = [gvS[ E Hi (v ,G)  depends only on v. Let ~v: H l ( v , G ) . +  
f f la(X,G) be the projections of  the direct limit. Then for any v e Cov(X),  
n*(g~) -=- gr s / t  I(X, G) depends only on 4. Moreover, if  4' is a principal 
fibre bundle with structure group G over X a n d  if 4 ~ ~', ge = ge'. We have 
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thus obtained a function from isomorphism classes of principal fibre 
bundles with structure group G over X to /~  I(X, G). That the function is a 
bijection is shown by constructing an inverse function. 

2.3. The Einstein Bundle of  Bases and its Reductions 

(a) We shall be interested in the reduction of the Einstein bundle (Br~iuer, 
1971) of bases (Hicks, 1964) ~E(X) of a space-time X. The Einstein bundle 
CE(X) has total space ~E(X) of all bases b Of all the tangent (Minkowski) 
spaces T(X,x) over the points x of X. It has structure group GL(4, •) 
(in this context the Einstein group E). The local sections of the bundle 
projection are defined in terms of the atlases 'A' of X. If  A is an atlas 
and V= dom(y) is a coordinate domain in A, there is a local section 
SV A'. X ~ (~/ay)x of the projection. The overlap cocycles are defined on 
V N V' = dom(y) fl dom(y')  by g~,v': x ~ (ay'/Oy)x. 

(b) The Einstein bundle can always be reduced to L the (full) Lorentz 
group L c E 

O(1,3, R) c GL(4, ~) 

(Markus, 1955). To see this, let g ~ GL(4, R) be the diagonal matrix with 
entries +1, -1 ,  -1 ,  -1.  Define ~L(X)c,.~r.(X) as the set of bases b of 
~E(X) such that 

where b* is the dual basis to b of the contangent space T*(X, zffb)). If  
b, b '~  &L(X) and re(b)= n(b') there is A ~ E with b ' =  b.A. But then 
g. A .g-1 = A-it which implies that A ~ O(1,3, ~). ~L(X) is the total space 
of a principal fibre bundle ~L(X) over Xwith structure group L, the Lorentz 
bundle. We aim to discuss the further reducibility of ~L(X) below and link 
it with the orientability properties discussed in Part 1. 

2.4. Group Extensions and the Structure of  L 

(a) A group G is called a group-extension of a group Q by a group K 
iff all three lie on a short exact sequence of groups: 

B 
K >  >G >> Q 

Through the inner automorphisms of G, there is a canonical homo- 
morphism w~Hom(Q,  Out(K)), where Out(K) is the group of outer 
automorphisms of K: Aut(K)/Int(K). [Aut(K) is the group of all auto- 
morphisms of K and Int(K) <~ Aut(K) is the group of inner automorph- 
isms.] In fact, Aut(K) is a group extension of Out(K) by Int(K). A group 
extension is said to 'split' on the right iffthere is a homomorphism y: Q --~ G 
which is a section o f t  over Q. If  the group extension Aut (K) of Out(K) by 
Int (K) splits on the right, there is a lift w' of w in any group extension of 
Q by K to Aut(K). If, further, the original group extension splits on the 
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right, it is called a semi-direct product of Q by K and is written KX w, Q. 
The latter is completely determined (up to equivalence) by K, Q and w' 
Hom (Q, Aut (K)). When w' is the trivial action, Q is an invariant subgroup 
of G, and G is called the direct product of Q by K written K • Q. K • Q is 
also a group extension of K by Q. Conversely, if we are given an action 
w E Hom(Q, Aut(K)) of Q on K, we may define a semi-direct product of 
Q by K on the set K • Q by writing 

(kl, ql). (k2, q2) = (kl. w(ql) (k2), q~. q2) 

A group extension of Q by Kis called central iff the canonical homomorph- 
ism w ~ Hom(Q, Out(K)) is trivial. (In this case, ifKis abelian it is a central 
subgroup of the group extension.) 

Alternatively, a group extension of Q by K may be specified by a pair 
(G, s), where s is an epimorphism of G onto Q and Ker (s) <] G is isomorphic 
to K. We use this notation below. 

(b) the Lorentz group L has the following structures as a group extension 
(Michel, 1965) corresponding to the invariant subgroups L+, L~' and L+~' = 
L+ fl L~' of L; respectively the proper, the orthochronous and the proper 
orthochronous Lorentz groups. These latter are defined by L~ = Ker (t) for 
t: L -+ Z2; t: ~-~ Aoo/IAool andL+ = Ker(d) for d: L -+ Z2; d: A ~ det(A). 
The extension structures are: 

(i) (L, t )=L~XwT/2(T) .  Here, 7/2(T) is the two-element cyclic group 
generated by the 'time-inversion' T = - g  [g is defined in Section 
2.3(a)]. W~Hom(Z2(T), Aut(Li')) is defined by W(T):A~-~ 
T . A . T - t = A  -~t. If I is the space-time inversion -~, one may 
re-express the above structure by L~XTff2(I ). These two extension 
structures are equivalent, even though the former does not 'look' 
central. In fact, W ( T ) =  In(g), the inner automorphism of L~ 
induced by g ~ L~'. 

(ii) ( L, d) = L+ Xw, 7/2( g) . Z2( g) is the two-element cyclic group generated 
by g, being the homomorphic image in L of the section -1  ~- g of d: 
L-->7/2. The action W'eHom(7/2(g) ,  Aut(L+))is just W'(g): 
A ~ + g . A . g - ~ = A  -at. The extension is again central because 
W'(g)  -- In(T) for TEL+. 

(iii) (L,f)=L+~Xw.(Y-2(g) • 772(T)). The homomorphismffrom L onto 
Z2 • Z2 is f :  A ~ (d(A), t(A)) and by definition, Ker (f)  = Ker(d) fl 
Ker(t)=L+~'. Alternatively, we may express the extension as 
(L+ Xp Z2(g)) • 2~z(I); 2~2(I) acting trivially on L+~. 

(c) As well as utilising the above structures of L, we shall be making use 
of an extension of L+~' expressed by the short exact sequence of groups: 

7/2 > ~, SL(2, C) �9 >> L+t' 
inr176 

z~ is the universal covering projection of SL(2, C) onto L+~. SL(2, C) and 
L+l' have topologies •3 • S a and R a • RP 3 respectively. 
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Spin (n) (Porteous, 1969) is the two-fold covering group of the orthogonal 
group SO(n, R) and is a group extension of SO(n, R) by 772. We note that 
Spin(3) = SU(2) and that there is a homomorphism of group extensions: 

7/2 > > SL(2, C) ~ ~> L+~ 

i n c .  ino.  

A A 
7/2 >j,~.; Spin(3) ~ S0(3) 

Spin (3) and S0(3, R) are respectively the maximal compact subgroups of 
SL(2, C) and of L+~'. 

2.5. Reducibility of ~L(X) to L~ 

(a) Corresponding to the structure of L as a group extension of Y-2(T) by 
LI' the orthochronous Lorentz group, there is a short-exact sequence: 

L~', ) L >> 7/2 

of constant presheaves of groups over any space-time X. Let y be the 
associated splitting homomorphism on the right. As we have seen, the 
above exact sequence of presheaves induces a long-exact 'Bockstein' 
coefficient sequence of (~ech cohomology groups. A portion of this Book- 
stein sequence is: 

B .  

H ~ ( X , L ~ )  ~" _ _ _  . . . .  > Ha(X, L) ~ Ha(X, Z2) --+ 

The homomorphism fl. is an epimorphism because fl. o 7. = 4. Therefore, 
the ~ech group /~ I(X,L) is a (split) group extension of/~a(X,772) by 
~.(/~ I(X,L~')). Any element o f /~  I(X,L), including XL the cohomology 
class representing the isomorphism class of the Lorentz bundle eL(X) of 
bases over X, can be written as a product of an element of /~  ~(K, L]') and 
an element o f / l  I(X, Z2) 

x~  = ~.(xL+).~.(r  

The element Xz~' of / t  a(X,L~) represents the isomorphism class of a principal 
fibre bundle over X with structure group L t and ~k x ~/~ I(X, Z2) the iso- 
morphism class of a principal fibre bundle over X with structure group 
Z2(T). Clearly, ~L(X) reduces to L~' iff q/x = 0, since 7. is a monomorphism. 
Therefore, the ~ech cohomology class ~O x also represents the obstruction 
to the reducability of Cz(X) to L~. We show in the next section that the 
principal fibre bundle over X with structure group Z2 represented by Cx is 
isomorphic to the time-sense bundle z(X) over X; therefore, r reduces 
to L~' iff X is time-orientable. 

(b) Recall that the total space of the Lorentz bundle of bases of a space- 
time Xis ~z(X) ,the totality of bases of the tangent Minkowski spaces over 
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X which diagonalise the Lorentzian tensor. Define an equivalence relation 
(m) in &z(X) by writing b ~-, b' iff zffb) = n(b') and b' = b./~ for A ~ L. The 
quotient space of &L(X) under this equivalence relation is a principal fibre 
bundle over X with structure group 772. The relation (~)  divides &L(X) into 
two families, the bases with respectively 'positive' or 'negative' temporal 
orientations. Over each point of X there is a pair of equivalence classes of 
bases of the tangent Minkowski space T(X, xo): I~(bo) and #(bo. T). bo is 
any base of T(X, xo) which includes the unit time-like vector 0~, (bo. T then 
includes -0x). The function #(bo)~ v(bo ~ is then an isomorphism of 
principal fibre bundles over X. That is, ~x ~ ( X ,  Z2)~ H I ( X ,  T2) 
(Spanier, 1966) represents the isomorphism class of z(X) and ~z(X) reduces 
to L~' iff X is time-orientable. 

2.6. Reducibility Of ~L(X) to L+ 

(a) Corresponding to the structure of L as a semi-direct product of 
Zz(g) by L+, there is a split-exact sequence of presheaves of groups overX: 

~tn ~s 
L+ > , L >> Z2(g) 

As above, there is a long-exact Bockstein sequence of ~ech cohomology, 
the relevant portion of which is: 

- - - - + / t l ( X , L + )  "'*, /11(X,L) ~ H~(X, Z2(g)) -+-- -  ,<---.;--- 

p' .  is an epimorphism because there is a section 7' of fl' and/~ l(Z, L) is 
expressible as a split-extension of H (X, Z2) by ct'.(ffU(X, L+)). Let 
Xr e H'(X, L) still represent the isomorphism class of the Lorentz bundle 
~L(X). Then we may write XL = a'.(XL+)" 7'.(@x') where Xr+ e/~ I(X, L+) 
and $x' e/ t l (X,  Z2) represent principal fibre bundles with structure 
groups L+ and Z2(g) respectively. Clearly, ~L(X) reduces to L+ iff @x' = O. 
We shall show below that @x' in fact represents the isomorphism class of the 
bundle of orientations of X, or that ~L(X) reduces toL+ iffXis an orientable 
4-manifold. 

(b) To see this, recall the definition of orientability of a manifold in 
geometrical terms. A manifold X is caned orientable (X is now smooth) iff 
its tangent bundle is an orientable bundle. Equivalently, X is orientable iff 
its bundle of bases reduces to the subgroup GL(n, g~)+ <1 GL(n, ~), where 
GL(n, ~) is the structure group of X and GL(n, ~)+ is the kernel of the 
homomorphism: 

O:GL(n,R) > > Z2 
0: g ~ sign(det(g)). 

Thus corresponding to the short exact sequence o f  presheaves of groups 
over X: 

GL(n, R)+ > ~ > GL(n, R) ~ ~> Z 2 
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there is a corresponding long exact ~ech cohomology sequence and a 
principal bundle over X with structure group 7/2 (called the orientation 
bundle of X) such that X is an orientable manifold iff the orientation 
bundle is trivial. Specialising to n = 4, consider the following diagram of 
group homomorphisms: 

a B 
GL(4, R)+ > > GL(4, R) ~> Z2 

inc .  j inc. 2"' 

O(1, 3- ~ ) + ,  > 0(1, 3; ~) >> Z2 ' inc. B' 

This induces a (~ech cohomology ladder, a portion of which is 

+ /~I(X, GL(4,R)+) "* 

I h 

- -  - ~ / ~  ~(x, o (L  3; R)+), 

> /~ I(X, GL(4, R)) " > /~ x(X, Z2) - + - - -  

l j, 

> /-~(x,O(L3;R))  +_,_'t_ , / ~  ~(x, z 9  - + - - -  

Consider the ~ech cohomology class j ' ,(XL)r GL(4)). The class 
/~,(j',(XL)) represents the isomorphism class of the orientation bundle of X 
if  X is a space-time. But /~, oj ' , (X,)= fl',(XD = ~P'x. Therefore X 
reduces to L+: r = 0, iff X is an orientable 4-manifold. 

2.7. Reducibility Of ~L(X) to L+t 

Here, one makes use of the structure of L as a split extension of 
Z2(g ) • ~V2(T ) by L+~. there is a corresponding diagram of presheaves of 
groups over X and a long exact 'Bockstein' sequence of (Jech cohomology 
groups, the relevant portion of which is 

- - - - +  BI(X,L+t) " ' ,  fIl(X,L) ~ /~I(X, Z2 • - + - - -  
r", 

and /~a(X,L) is a (split) extension of /~I(X, Z2xZ2)_~/~a(X, Z 2 ) O  
/4a(X, Z2) by �9 ,(/~I(X,L+~')). The class of the Lorentz bundle XL~ 
/~I(X,L) can therefore be written XL=~",(XL+~)?~,(~X)'?'~,(~'X) 
where ?~, ~ are composites of monomorphisms and hence mono- 
morphisms. Thus ~L(X) reduces to L+~' iff ~x and ~'x vanish iff Xis both an 
orientable manifold and a time-orientable space-time. 

There is the following connection between the overall orientability of a 
space-time manifold and the properties of time and space-orientability. 
The orientation bundle of a space-time is a fibre-product of the time- 
orientation bundle and the space-orientation bundle. This means that any 
two of the three possible orientability properties imply the third. For 
example, if a space-time is time-orientable and is an orientable 4-manifold, 
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it is a space-orientable space-time. Also, if X is time-orientable and space- 
orientable, it is also an orientable 4-manifold and its structure group reduces 
to L+~'. 

2.8. Spinor Structures 

A space and time orientable space-time Xis said to carry a spinor structure 
iff its Lorentz bundle ~L+~(X) can be extended to SL(2, C) in such a way 
that the covering map from the bundle of 'spinor bases' (Penrose, 1968) of X 
to the bundle of bases restricts on the fibres SL(2, C) to be the universal 
cover onto L+~'. We first briefly discuss a closely allied concept 'spin 
structures'. 

(a) A principal fibre bundle ~ with structure group SO(n, ~) over a space 
X is said to carry a 'spin-structures' (Borel & Hirzebruch, 1959; Milnor, 
1963) iff ~ can be extended to Spin(n) in such a way that the projection 
restricted to a fibre is the covering map of Spin(n) onto SO(n, ~). Corre- 
sponding to the exact sequence: 

Z2 ~ ~ Spin(n) " >7 SO(n,  R) 

of presheaves over Xis the usual coefficient sequence of (~ech cohomology, 
a portion of which is: 

-+ ~ l (X ,  Spin(n) ) ~ . ,  ~ I (X,  SO(n,N) ) e, r /~2(X,~72) 

If  ~ ~ H l(X, SO(n, N)) is the representative of the isomorphism class of 
4, ~ has a spin structure ~ ~ Im(rc,) iff ~ E Ker(6,)  by exactness, or iff 
6,(~) = 0. That is, ~ carries a spin structure iff 6,(~) ~/~ 2(X, 222) vanishes. 
In the case that Xis a compact manifold, it can be shown that 6"(~) = wz(X), 
the second Stiefel-Whitney class of X. Hence, a principal S0(3, R) bundle 
over a compact space carries a spin-structure iff wz(X) = O. 

(b) A space and time orientable space-time X carries a spinor-structure 
iffits Lorentz bundle of bases ~L+ ~(X) extends to SL(2, C) in such a way that 
the restriction of the covering map to any SL(2, C) fibre is the universal 
covering map SL(2,C) -+ L+~. Recall that there is a morphism of group 
extensions 

i n c .  ~ 
712 > SL(2, C) ~ L+~ 

71 2 > > Spin(3) ~ S0(3, R) 
i n c .  �9 

where n and n' are the universal covering projections and Spin(3) and SO(3) 
are the maximal compact subgroups of respectively SL(2, C) and L+~' which 

8 
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are connected Lie groups. There is an induced diagram of presheaves of 
groups over X and a Cech cohomology ladder 

V ~,I~ V ~ V 

. . . .  ~" H*(X ", SL(2, C)) : " H~(X , L+f) - - - -+  H~(X, 2121 , --- 

T TM 1,. 11 
V V V 

, H~(X, SO(3)) , Ha(X, Z2) ' --- - >  H~(X, Spin (3)) ~,., ~,' 

The vertical homomorphisms are isomorphisms because Spin(3) and 
SO(3,E) are the maximal compact subgroups of the Connected Lie groups 
SL(2, C) andL+~' (Bott & Mather, 1967). [Incidentally, eL+ T(X) can therefore 
always be reduced to S0(3, R).] If  XL as usual represents the isomorphism 
class of the Lorentz bundle in/~ I(X,L+~'), then X carries a spinor structure 
iff the reduction of CL+t(X) to S0(3,  R) carries a spin structure. Therefore, 
if Xis a compact space-time it carries a spinor structure iffits second Stiefel- 
Whitney class vanishes. 

(c) Geroch (1968) has shown that if a non-compact space-time carries a 
spinor structure then it is the trivial one. To do so he constructed a global 
section of the 'spinor bundle' of bases covering the Lorentz bundle. There- 
fore, projecting this section on the Lorentz bundle to yield a global section 
of the latter, we obtain a parallelisation of X. Thus a space-time which 
admits a spinor structure must be parallelisable. Conversely, a parallelisable 
space and time orientable space-time admits a spinor structure, because 
if X is parallelisable, ~L+t(X) ~ X x L+t and the obvious projection: 

X x  SL(2, C) -+ X x L+t 

is a spinor structure of X. 
This concludes Part 2 and our analysis of space-time orientability. 

Part 3 is given over to a discussion of a different topic. 

Part 3. Coarse Causal Topologies on Space-Times 

The purpose of this part of the present paper is to describe an extension of 
some results published earlier (Whiston, 1972) in the form of letter. In that 
letter; the retopologisation of Minkowski space with a topology induced by 
Zeeman's causal order (Zeeman, 1964) was discussed. The generalisation 
described here is to retopologise time-orientable space-times with anal- 
ogous topologies generated by their causal relations. 

Let us agree to call a time-orientable space-time X 'future complete' if[" 
its unit-timelike vector field is right complete or 'past-complete' iff the 
vector field is left complete. For example; the open top half of a two- 
dimensional Minkowski space whose Lorentz tensor is generated by 
(O/Oy) is future, but not past complete. A curve e in X is called time-like 
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and oriented towards the future iff its canonical lift to T(X) ,  c = T(c) o 
(d/dt) lies in the open 'sub-bundle'  of  future-time cones. 

A causal relation may be defined in X a s  follows (Geroch, 1969; Penrose, 
1968). I f  x, x '  E X one writes x < x'  iff x and x' lie on a smooth, time-like 
curve oriented towards the future and x, x '  = c(s), c(s') for s < s '  in dom (e). 
The relation (<) is transitive; for if x < x '  and x '  < x" we note that x and x" 
lie on a continuous curve; smooth except perhaps at x '  where tangent 
vector expect perhaps at x '  is time-like and oriented towards the future 
with x, x" = e"(s), e"(s") for s < s" in dora(e"). To obtain the required curve 
one rounds off e" at x'. This implies x < x". 

The topology generated by (<):z(<) has for basis all the 'pasts '  {x] - 
{y ~ X k y < x} of  the points of  X. That  the latter family forms a basis, that 
the singleton collections {{x]} form a local base at any x ~ X, that the 
'futures'  [ x>- -{y  ~ X k x < y }  are ~(<)-closed and that for any x e X, 
C l ( < x ] ) = { y e  X k < y ]  k < y ]  ('1 < x ]  # ~}, are easy consequences of  
the transitivity of  (<). X retopologised with z(<) will be denoted by X(<). 
z(<) is rather a weird and, unhappily, not too useful, topology on a space- 
time. Compare it with, say, the Alexandroff topology (Penrose, 1968). 
Whilst v(<) is not comparable to the manifold topology, the Alexandroff 
topology is always coarser and sometimes even coincident with the manifold 
topology. However, z(<) does have some interest in that it allows one to 
couch properties of  the causal order in topological terms. 

Proposition 1. X(<) is To iff Xadmits  no closed future-oriented time-like 
C u r v e s .  

Proof. I f  X(<) is not To there exist points x, x '  ~ X, x r x '  and x '  s V, 
x ~ V' g V e  N(x),  V' ~ N(x') .  Inpart icular ,  x e < x'] and x '  ~ < x], which 
means that x < x '  < x. Because x # x ' ,  x < x '  < x => x < x or x lies on a 
closed future-oriented time-like curve. Conversely, let c be a closed, future- 
oriented time-like curve in Xand  x, x '  be distinct points on c. Then x < x '  and 
x '  < x implying x ~ < x'] and x '  ~ < x] or x ~ V',  x'  ~ V V V, V' ~ N(x) ,  
N(x') .  X(<) cannot therefore be To. 

By the above, if X is a compact space-time, X(<) is not To, TI or T2. In 
fact, X(<) can never be T1 (or T2). In most cases X(<) is not T3 or T4; for if  
there are x, x '  ~ X such that x ~ X\[x '> and <x] N <x']  r ~ ,  any two 
neighbourhoods. V ~ N(x) ,  V' e N([x '>)  meet. This is because the open set 

U {< x"]} 
x" ~>x' 

is a basis for the neighbourhoods of  [x'>. By hypothesis 

< x] n ( U {< x"]}) # 
x">-.x" 

In some cases, X(<) is hyperconnected (Steen & Seebach, 1970), that is 
X(<) has no disjoint open sets. Clearly, if X(<) is hyperconnected it is 
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connected and cannot be T3. Moreover, hyperconnected spaces are compact 
iff they are locally compact iff they are paracompact. For example, if X has 
a null past infinity, X(<) is hyperconnected because for any points x, 
x' e X, <x] N < x'] r ~ ; whilst if Xhas a space-like past infinity (Penrose, 
1964), there are points 'near the boundary' whose pasts do not intersect. 

Proposition 2. If  X is future complete, X(<) is non-compact. Proof: Let 
ex v be the maximal integral curve of the right complete vecto field V from 
x e X, and let {x,}n ~ • be the integer points along it. ([x,)} n e ~ is a family 
of closed sets of X(<) with the finite intersection property: fq n e K([x,>} 

if K is a finite set of integers. But fq n e ~{[x,>}= ~ .  For if not, [x> 
would be bounded above, which is not true. 

Lastly, it follows trivially from the definition of homoeomorphism and 
the fact that (< x]} is a local basis at any point x e X, that the group of auto- 
homoeomorphisms of X(<) is the group of all permutations of X which 
bipreserve the causal order 

x < x '  => f ( x )  < f ( x ' )  and f - l ( x )  < f - l ( x ' )  

For Minkowski space, Zeeman's theorem (Zeeman, 1964) states that 
aut(X(<)) --- D~', the orthochronous Poincar6-dilatation group. 
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